Billy Buchanan, Ph.D. Director of Data, Research, and Accountability Fayette County Public Schools
$$Pr(Y_{ij} = 1 | a_i, b_i, c_i, d_i, \theta_j) = c_i + (d_i - c_i)\frac{exp^{(\alpha(\theta_j-\beta_i) ) }}{1 + exp^{(\alpha(\theta_j-\beta_i) ) }}$$
$$Pr(Y_{ij} = k | \theta_j) = \frac{exp^{ (\Sigma_{t=1}^k\alpha(\theta_j-\beta_{it}) ) }}{1 + \Sigma_{s = 1}^K exp^{ (\Sigma_{s=1}^s\alpha(\theta_j-\beta_{it}) ) } } $$
$$Pr(Y_{ij} = k | \alpha, \beta_i, \theta_j) = \frac{exp^{ (\Sigma_{t=1}^k\alpha(\theta_j-\beta_{it}) ) }}{1 + \Sigma_{s = 1}^K exp^{ (\Sigma_{s=1}^s\alpha(\theta_j-\beta_{it}) ) } } $$
$$Pr(Y_{ij} \geq k | \theta_j) = \frac{exp^{ (\Sigma_{t=1}^k\alpha_i(\theta_j-\beta_{ik}) ) }}{1 + \Sigma_{s = 1}^K exp^{ (\Sigma_{s=1}^s\alpha_i(\theta_j-\beta_{ik}) ) } } $$
$$Pr(Y_{ij} = k | \theta_j) = \frac{exp^{ (\alpha_{ik}(\theta_j-\beta_{ik}) ) }}{\Sigma_{h = 1}^K exp^{ (\alpha_{ih}(\theta_j-\beta_{ih}) ) } } $$
All the data used for these examples, and the source code used to simulate it is publicly available.
To get the files, go to https://github.com/wbuchanan/kaacSlideDeck/tree/gh-pages
The file itemResponses.csv contains the .CSV file used for the examples.
The file simulateItemResponses.R contains the source code used to generate the simulated data in the .CSV above.
Oh...and by the way...